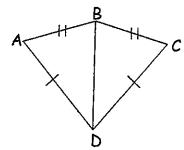
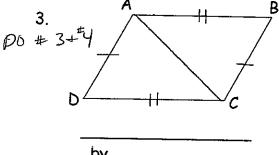
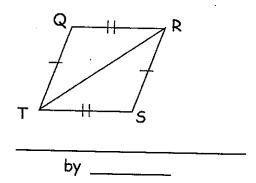

Geometry

Worksheet: Congruent Triangles SSS & SAS

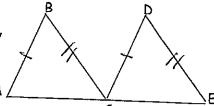

Name _____ Date Period


Write a congruence statement between triangles and state the postulate implied. If you cannot apply a postulate, write "no conclusion can be made."


1.

2.

Name the included angle of the given sides of the triangle:

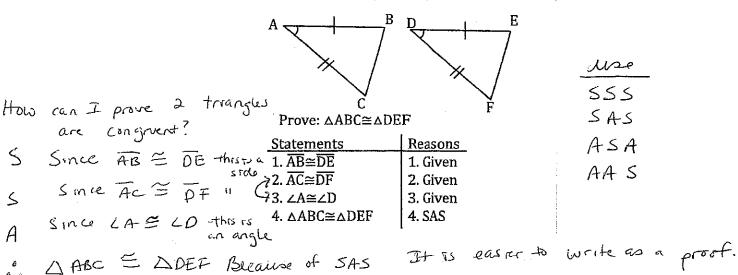

- 5. $\sqrt{\Delta JKL}$: A) \overline{JK} and \overline{KL}
- ΔORS :
- A) \overline{QR} and \overline{RS}

LK is included in both sides

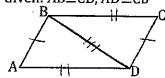
B) \overline{SQ} and \overline{QR}

 \perp_{L} B) \overline{LJ} and \overline{JK}

7. Assume that $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DE}$. What additional Information would you need to prove that $\triangle ABC \cong \triangle CDE$ by AC = CE

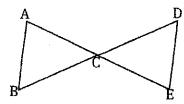


8. Assume that $\overline{AB}\cong \overline{CD}$ and $\overline{BC}\cong \overline{DE}$. What additional Information would you need to prove that $\triangle ABC \cong \triangle CDE$ by


SAS?

Explain in plain English what is going on in the proofs.

9. Given: $\overline{AB} \cong \overline{DE}$, $\overline{AC} \cong \overline{DF}$, and $\angle A \cong \angle D$


10. Given: AB≅CD, AD≅CB

Prove: △ABD≅△BCD

Statements	<u> Reasons</u>
1. ĀB≅CD	1. Given
2. AD≅CB	2. Given
3. BD ≅ B D	3. Reflexive property
4. ΔABD≅ΔCDB	4. SSS

//. Given: AE Bisects BD, ∠B≅∠D

Prove: △ABC≅△DBC

Statements	Reasons
1. ∠B≅∠D	1. Given
2. \overrightarrow{AC} Bisects \overrightarrow{BD}	2. Given
3. BC ≅DC	3. Definition of Bisect
4. ∠ACB≅∠DCE	4. Vertical angles
5. △ABC≅△DBC	5. ASA