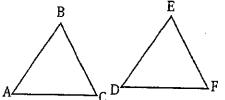
Your turn! Write an analysis of each proof involving congruent triangles.

1.

Analysis:

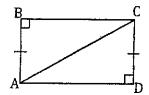
Given: $\overline{BC} \cong \overline{EF}$, $\angle B \cong \angle E$, and $\angle C \cong \angle F$



Prove: △ABC≅△DEF

Statements	Reasons
1. BC≅EF	1. Given
2. ∠B≅∠E	2. Given
3. ∠C≅∠F	3. Given
4. △ABC≅△DEF	4. ASA

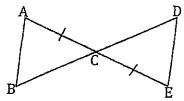
2. Given: AB≅DC



Prove: △ABC≅△CDA

Statements	Reasons	
1.	1. Given	
2.	2.	
3.	3.	
4.	14.	
<i>3</i> .		

Given AB || ED, AC≅EC



Prove: △ABC≅△EDC

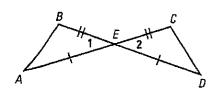
Statements	Reasons
1. AB ED	1. Given
2. Ā C≅ Ē C	2. Given
3. ∠A≅∠E	3. Alternate Interior angles AIAT
4. ∠ACB≅∠DCE	4. Vertical angles Theorem VAT
5. △ABC≅△DBC	5. ASA

Analysis:

Working backward we must ask the key question, "How can we show that two triangles are congruent?" The answer? A triangle congruence theorem like SSS, SAS, ASA, AAS

but which one? To find out, start working forward. Listing all of the given information gives us a pair of angles $\angle A$ and $\angle D$ sandwiched between a pair of congruent sides $\overline{AB}\cong \overline{DE}$ and $\overline{AC}\cong \overline{DF}$. So this means we have $\triangle ABC\cong \triangle DEF$ by the SAS theorem

 \mathcal{A} . Prove that $\triangle AEB \cong \triangle DEC$.

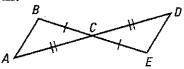


Statements		Reasons
1.	· : ·	1.
2.		2.
3.		3.
4.		4.

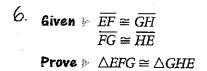
5. Fill in the missing statements and reasons.

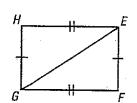
Given
$$\triangleright \ \overline{CB} \cong \overline{CE}, \overline{AC} \cong \overline{DC}$$

Prove
$$ABCA \cong \triangle ECD$$



Statements	Reasons	
1. $\overline{CB}\cong \overline{CE}$	T. 2	
2?	2. Given	
3. $\angle BCA \cong \angle ECD$	3. ?	
4. $\triangle BCA \cong \triangle ECD$	A 2	





Statements	Reasons	
1. $\overline{EF}\cong \overline{GH}$	1. Given	
2. $\overline{FG}\cong \overline{HE}$	2 ?	_
3. $\overline{GE} \cong \overline{GE}$	3?	_
4. $\triangle EFG \cong \triangle GHE$	4?	